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We propose:

Theorem 1 (Cancellation property for analytic space germs). Let X, Y, and Z be
three germs of complex analytic spaces. If X x Z~Yx Z then X ~Y.

Fig. 1. Direct product of cusp and node
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Cancellation properties have been studied in various situations. For algebraic
varieties and biregular equivalence the problem is unsolved to a large extent. The
most prominent result is due to Fujita (see [K]): If X is an affine surface (over an
algebraically closed field of characteristic zero) such that X x Z~A? x Z for some
variety Z then X is the affine plane. If biregular is replaced by birational
equivalence the cancellation property does not hold. In fact, Beauville, Colliot-
Théléne, Sansuc, and Swinnerton-Dyer [BCSS] exhibited (over every algebrai-
cally closed field of characteristic different from two) a non-rational variety X of
dimension three such that the product X x P? is rational.

In global complex analytic geometry Horst [H, H 1] proved a cancellation
theorem which combined with a result of Parigi [P] gives a complete and explicit
description of those compact (not necessarily reduced) analytic spaces which
cannot be cancelled. In local complex analytic geometry the cancellation property
was proven by Ephraim [E] and Spallek [S] for reduced X, Y, Z as well as for
arbitrary X, Y provided Z is smooth. Horst [H, H 2] established the case where
one of the three germs is a fat point.

In the present article it will be proven that the cancellation property holds for
all complex analytic space germs. By Artin’s approximation theorem it is
equivalent to the cancellation property for algebroid spaces (defined by ideals of
formal power series). This in turn is an immediate consequence of the following
structure theorem for algebroid spaces. Call an algebroid space Z decomposable if
there are non-trivial algebroid spaces Z, and Z, (i.e., different from the reduced
point) such that Z~Z, xZ,.

Theorem 2 (Unique factorization property of algebroid spaces). For any non-trivial
algebroid space Z there are a unique integer p and non-trivigl indecomposable
algebroid spaces Z,, ...,Z, unique up to permutation and isomorphism such that
Z~ZiX...XZ,

The analytic version of this statement (although proven for reduced germs by
Ephraim [E] and Spallek [S]) remains open in general. However, it does hold if the
germ is algebraic (=Nash analytic), i.e., if it can be defined by power series which in
suitable coordinates are algebraic over the ring of polynomials:

Theorem 3 (Unique factorization property of algebraic analytic space germs). For
any non-trivial algebraic analytic space germ Z there are a unique integer p and non-
trivial indecomposable analytic space germs Z,, ..., Z , unique up to permutation and
isomorphism such that Z~Z x ... x Z,. The factors Z; are algebraic. Moreover,
passing to completions, Z~2, x ... x Z ,is the factorization of Z into indecompos-
able algebroid spaces.

Note that this contains Horst’s factorization theorem for fat points [H, H 2].
Theorem 3 is deduced from Theorem 2 by applying the Popescu-Rotthaus
approximation theorem with nested subring condition [Po,R]. This is why the
germ Z has to be assumed algebraic. And, by Gabriélov’s example [G] one knows
that this approximation theorem may fail in the non-algebraic situation.

The whole story becomes considerably simpler if one deals with local analytic
families instead of individual germs:
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Theorem 4. Let {X,},.r and {Y;},. 1 be two local analytic families of analytic space
germs parametrized by some reduced germ T. Assume that X, x Y,~X,x Y, for all
teT Then X,~X, and Y,~Y, for all teT

This result has a nice consequence:

Corollary. Let {X,},.r and {Y},.r be two local analytic families of analytic space
germs with T reduced. If X,~Y, and Y,~X, for all te T different from O then
XoxY,.

We thank D. Popescu for helpful suggestions concerning approximation
arguments.

1. Proof of Theorem 1

We shall denote by X the completion of some analytic space germ X. Note that
X ~Y if and only if X ~ ¥, This can be seen by choosing defining equations of X
and Y in smooth spaces and applying Artin’s approximation theorem [A,
Theorem 1.2]. So assume X x Z~Y x Z. Then X x Z~ ¥x Z. Factorize X, ¥, 2
into indecomposable algebroid spaces. The uniqueness of the factorization given
by Theorem 2 yields X ~ ¥ and hence X ~ Y,

2. Proof of Theorem 3

The deduction of the unique factorization property of algebraic analytic space
germs from the corresponding formal property uses the Popescu-Rotthaus
approximation theorem with nested subring condition (cf. [Po, Theorem 1.4],
resp. [R, Theorem 4.2] in conjunction with [BDL, Remark 1.5]). We shall need an
extension of this result to systems of algebraic equations instead of polynomial
ones. This generalization goes along the lines of [B-M, Theorem 12.6].

Let 0,=C{x} denote the algebra of convergent power series in n variables,
C{x> the subalgebra of algebraic power series, ie., of those f in €{x} or,
equivalently, in €[[x]] which are algebraic over the ring €[x] of polynomials. We
then have:

Approximation theorem (with nested subring condition, Popescu, Rotthaus). If a
system of algebraic equations fe ©{x,y,u,v)? has a formal solution

S(x, y,a(x), #(x, y))=0
withie C[[x]]", 5e C[[x, y]11°, both without constant term, then there exists for any
keN an algebraic solution

S(x, y, u(x), v(x, y))=0

with ue €C{x)" and ve C{x,y)* approximating it and ¥ up to order k:
u=i, v=d mod(x,ylF*? .

Proof. By [A 1, pp. 4,5] one can choose an f e €<x, y, u, v>* without constant term

such that there exists a polynomial PeC[x, y,z,2,u,v]P*7 satisfying

P(x,y,f fu,v)=0 and det(d,P,d,P)(0)+0.
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The implicit function theorem ylelds a p x (p+ g)-matrix 4 with entries in C[[x, y,
z, Z, u, v]] such that

z—f=A-P.

Consider then the polynomial g=z—w-P where w denotes some system of
coordinates on M, ,, (C)=C"**9, If we replace in g the variable w by
w=A(x, y, 2, 2, #(x), {x, y)) we obtain zero:

g(x, y, z, 2, i(x), o(x, y), w(x, y, 2, 2)) =0.
Since g is a polynomial, the original Popescu-Rotthaus theorem [loc. cit.] applies
to this equation. We thus obtain an algebraic solution

g(x, y, z, 2, u(x), v(x, y), w(x, y, z,2)) =0

approximating the formal one up to order k. Replace now in this last equation z by
£(x, y, u(x), o(x, y)) and 2 by f(x, y, u(x), o(x, y)); using P(x, y, f, f,u, v)=0 one obtains

S, y, u(x), v(x, y))=0
proving the assertion.
We apply this theorem to prove first:

Proposition. Let Z be an algebraic analytic space germ. If its completion Z is
Jormally decomposable then Z is analytically decomposable into algebraic factors.

Proof. Let Z be defined in (T, 0) by anideal I of €{x} generated by the components
of some vector feT{x)?. By the implicit function theorem for algebraic map
germs (cf. [L-T, Sect. 2, Teorema 1]) we may assume that the embedding of Z is
minimal, i.e., that 1C(x)2. Let A" denote the affine algebroid space of local ring
#,=C[[x]]. If 2 is formally decomposable there exist an automorphism ¢ of A"
and a partition x =(x,,x,) such that

JPx)=J$(x,0)+J$0,x5),

where J =1 - C[[x]] and J@(x) = §*(J)C (E[[x]] We may assume that ¢ is tangent
to the identity. The preceding equation is equivalent to saying that there exists a

2p x p-matrix A= (g ) with entries in €[[x]] and rank p at 0 such that
2

A1) (fe P )=(f§)(x1,0)
A %) (fo P)x)=(f P (0, x7).

We shall treat these two systems of equations separately: The approximation
theorem yields

(i) px p-matrices A4,, A, with entries in €{x) such that 4 = (jl> has rankp
at 0; . 2

(ii) algebraic coordinate changes ¢, ¢ of (C",0) tangent to the identity;

(iii) algebraic map germs a;€ €{x)" i=1,2, with

Ay - (fog)=fon, and Az'(f"‘i}):f"“z-
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Let y=(1p;,%,) and $=(,,P,) be the inverses of ¢ and ¢ with components
according to the partition x=(x,,x,). Then

(Ayoy)-f=foayop; and (4,o9)-f=fooyoth,.

As 1y and 3 are tangent to the identity the pair (y,, ;) is an automorphism of
(€,0). Let x be its inverse. Then

(Ayopox) (fox)=foa, and (Ayopop)-(foyx)=fou,.

Since f oo, e C{x;)? (cf. [L-T, Sect. 2, Lemma 2]) and I C(x)?, X is decomposable
into non-trivial algebraic factors.

Proof of Theorem 3. Let Z~Z, x ... x Z, be a factorization of Z into non-trivial
indecomposable analytic factors. Using the preceding proposition we can
moreover choose a factorization Z~ Y, x ... x Y, into non-trivial indecomposable
algebraic factors such that p equals the number of indecomposable formal factors
of the completion Z of Z. The algebroid spaces ¥; are thus indecomposable.
Theorem 2 now implies that Z, is isomorphic to a product of some ¥s say
Z,~¥ x..xY, Artin’s approximation theorem (cf Sect.1) gives
Z,~Y, x...x Y, As Z, is indecomposable, m must equal one, say Z, ~Y,. By
Theorem 1 we obtain Z,x...xZ,~Y,x...xY, Now induction gives the
assertion of Theorem 3.

Remark. We could prove the unique factorization property for arbitrary analytic
space germs if the following statement could be proven: An analytic space germ Z
is analytically decomposable provided that Z is formally decomposable.

However this is not clear. We want to remark that the statement is true for
hypersurfaces (and consequently the unique factorization property does hold for
products of hypersurfaces.) In fact, let ZC(C",0) be a hypersurface defined by
feC{x}.If Z is decomposable then necessarily one of the factors is smooth. Hence
there is a formal vector field & vanishing at 0 and a formal ae €[[x]] such that
&f=a- f. Since C[[x]] is flat over C{x} we obtain an analytic vector field ¢ not
vanishing at 0 and an analytic ae €{x} such that {f=a - f. By the analytic version
of Lemma 1, Sect. 5, (see [F, pp. 92, 93]) Z is decomposable.

3. Proof of Theorem 2

The existence of a factorization into indecomposable factors is readily established
using induction on the embedding dimension of Z. The hard part is the proof of
uniqueness. Let

Z~7,x%... ><szZ1 X ... X Zq

- be two factorizations into non-trivial indecomposable factors. Combining Lem-
ma 1 and 2, Sect. 5, with the argument given in the proof of [E, Reduction 2 on

p. 368] we may assume
Z+7 x A*

for any algebroid space Z and any positive dimensional affine space A*. We shall
proceed by induction on p, the case p=1 being obvious. So assume p> 1. This
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implies g >1. We set:
X=Z,, Y=2Z,x..xZ,,
U=2,, V=2Z,x..xZ,.

We shall eventually show that after a suitable permutation of the factors Z; we
have X~U and Y~ V. This will establish the induction step.

(0) As we shall work with defining ideals we choose minimal embeddings X C A™,
YCA" UCA ,VCA . Thenm+n=r+s=:dand X x Y=(X x A"N(A™ x Y)C A"
Let M, N, R, SC %, denote the defining ideals of X x A", A"x Y, U x A%, A" x V in
A’such that M + N defines X x Y etc. The given isomorphism between X x Y and
U x V can be extended to an automorphism of A* which we denote by (g, 5)
according to A?=A" x A®. We then have:

M+ N=(g,0)*(R+5),
which we shall write for short:
M+N=Rg+So,

where Rg denotes the ideal §*(R) of 2, with § = (g, 0): A%— A" x A*= A?. Moreover
choose systems of coordinates x, y, u, v on A", A" A’, A° After a suitable
permutation of the factors Z; we may assume that

0,0(0)%0. ()]

The subsequent proof relies on a detailed study of possible forms of the
automorphism (g, o) of A%. We first treat a particularly simple case. Later we shall
show that actually this is the only case which can occur:

(1) The components g, o of (g, o) are both tangent to the identity,i.e,m=randn=s
and (g, o) has linear term (x, y). We shall deduce that then X ~U and Y~ V.

Let (4, v): A%—A™ x A"= A’ denote the inverse of (g,0). With the notation
fixed above we then have:

M+N=Rg+S¢

and R+S=Mu+Nv.

For anideal I of #, let I(x, 0) be the ideal of %, generated by all f(x,0) with fe I. As
M(x,0)=M and N(x,0)=0 we get:

M>Rg(x,0), ND>Sa(0,y),
Ro>Mu(u,0), SONW0,v).
Substitution gives:
M>Mu(e(x,0),0), NDNW0,0(0,y).

As u(g(x,0),0) has linear term x it defines an automorphism of A™ Because of
M = M(x,0) Lemma 6, Sect. 5, applies to the above inclusions and yields equalities:

M=Mule(x,0),0), N=N»0,0(0,y).



The cancellation property for direct products of analytic space germs 215

These in turn imply
M=Rg(x,0), N=S0(0,y).

As ¢(x,0) and ¢(0, y) define automorphisms of A™ and A" respectively, we have
proven that X~ U and Y~ V.

(2) Reduction to the case where (g, o) has linear term (x, y,, x5, ¥,)- Here (x,, x,)
and (y,, y,) denote partitions of the coordinates x and y according to factorizations
A"=A" x A™ and A"=A" x A" with m;+n,=r and m, +n,=s.

Indeed, in case the jacobian matrices of ¢ and ¢ satisfy

rkd,,0(0)=rk,0(0) + rkd,o(0), (A)
1kd,,0(0)=rkd,0(0)+rkd,0(0), (v)

Lemma 4, Sect. 5, gives the stated normal form. If inequality “<” holds in either
(A) or (v) we shall deduce that Z ~ Z x A* for some k>0 and contradiction. So
assume that “<” holds in (A), the reasoning for (v) being symmetric. By
Lemma 3, Sect. 5, we may suppose that

10 0\ my=r,
01 0} my=r,
0 0 0 my

6ue®={ 0 0 0 n,
01 0/ ny,=r,
0 0 1/ ny=r,
N P N

with m, =n, =r, strictly positive. Let @ be the automorphism of Z,=C[[x, y]]
=C[[u,v]] associated to (,v)=(g,6) !, and d,, d, the column vectors of partial
derivatives. The conjugate =®0,8~ ' of d, induces by putting v=0 a column
vector D=A -, of derivations of C[[u]] with some (n x r)}-matrix A of entries in
C[[u]]. Recall now that M+ N=Rg+So and therefore M)+ P(N)=R+S.
From d,M CM we deduce §(@(M))C &(M)CR+ S and then

HD(M))yy= o CRyy= o=RNC[[u]]. (=)

Since R is generated by RNC[[u]] and S C(v)? - C[[w,v]] we have for fe R and
ges:
O No=0=D(fjy=0)ModRNC[[u]] and &(g),=0=0=D(g),=0)-

Applying this to the elements of ®(M)C R + S we conclude from (=) that
D(P(M)y, = o) CRNC[u]], (+)
and by symmetry:
E(®(N)j,=0) CRNC[[u]], (-)

where E=B-9, is induced from 3,8~ '. Let A, and B, (i=1,2,3) denote the
(n; x r)-, resp. (m; x r)-blocks of A and B. As A(0)=0,¢(0) and B(0) = 9,0(0) the (r x r)-
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matrix K of blocks B;, B,, and A4, will be invertible. Hence there is an (r, xr)-
matrix L=(L, L, L;)such that L-K=A4,. Clearly L{0)=(0 1 0)and L,B, + L,B,
=A,—L3A;=:C. Inclusions (+) and (—) thus imply that both C- 3, (®(M),,-,)
and C-0,(®(N),-o) lie in RNC[[u]], where C-0, is now an r,-column of
derivations of C[[u]]. As (M)}, - o + P(N)}, =0 =R,=o=RNC[[u]] we get finally
the inclusion

C- 0, (RNC[[u]) CRNC[[u]].
Since C(0)=(0 1 0) and r,>0 Lemma 1, Sect. 5, implies that UC A" defined by

RN [[u]] and consequently Z can be factorized involving a smooth factor. This
proves the reduction.

(3) The automorphism (g, &) has linear term (x,, y,, X5, y,) according to A™ =A™
x A™ and A"=A" x A" In this case we shall show that m,=n, =0, ie, (g, 0) is
tangent to the identity as in (1). The proof of this implication is somewhat involved
and goes in several steps:

(1) We start with the two equations

M+N=Rgp+Ss and R+S=Mpu+Nv.
We use M(x,0)=M and N(x,0)=0 to get:
M =Rg(x,0)+ Sa(x,0)

and
R=Mp(u,0)+ Nv(u,0),

S=Mu(0, )+ Nv(0,v).
We substitute:
M = Mu(o(x,0), 0) + Nv(g(x, 0),0)

+ My(0, o(x, 0))+ Nv(0, 6(x, 0)

d Mp(o(x, 0),0) + Mu(0, 6(x, 0).
We define: '

o f: A" —A",  a(x)=p(e(x,0),0), Bx)=m0,0(x,0).
Thus:
M>Ma+MB,

where Ma and MBC &, are defined in the natural way via the inclusion A™C A%
Iteration gives:

M>Ma*+ M, keN, (*)

(ii) We describe a* and f*: The normal form of (g, o) implies that « and g have
linear terms (x,,0) and (0, x,) respectively. Applying Lemma 5, Sect. 5, we can
assume' that

ofx) =(5(x1), 22(x)) and B(x)=(B(x), B1(x>))
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with a,, #, =0mod(x)2. This implies:
a*(x)= o*(x,, 0) mod(x)** !,
B¥(x)= B0, x,) mod (x)**1.
(iii) We define
Ve AT A™,  y(x)=a"(x,,0)+ B0, x,).
By substitution in (*):
M +(x)** 1D My (x,,0)+ My, (0, x,) ()
and symmetrically:
N+ 1ONS (1, 0)+ NGO, y,). )

We shall show that these inclusions are actually equalities mod(x, y)**!: Fixing
ke N, we may omit indices and write y instead of y, in this section. Consider again

M+N=Ro+Sa.

Then
(M+N)(yxd)=My+Nbé=Rg(y x 8)+ Sa(y x 8)

with y x §: A™*"— A™*" Restriction to A™ x 0 x A™ x 0 yields:
My(xy,0)+ Nd(y4,0) > Re(x(x4, 0), (y4, 0))
and symmetrically
My(0,x,)+Nd(0, y,) > Se(¥(0, x,),5(0, y,)) .
Combining this with (a) and (v) gives:
M+N+(x,y)* " ' ORG(xy, y1) + Sw(x3,¥5),
where
B(x1,y1): =0((%1,0) 6(y 1, 0)),
W(x2, y3): = a(¥(0, x2), 6(0, y,)) -

As
R+S=(M+N)(u,v)

we finally obtain
M+N+G, ) 1 OM+N)(w,v) oy,

where y is defined by yx(x,y)=(¢(x;,y1),w(x2¥2)). As x has linear term
(x1, 1, X4, y;) the composite (i, v)o x is an automorphism of A‘. Hence we can
apply Lemma 6, Sect. 5, to establish the congruence

M+N=(M+N)(gv)o xmod(x, y)**.

This is only possible if the inclusions (A) and (v) already were equalities
mod(x, y)**1.
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{(iv) We have shown for arbitrary ke N:
M = My,(x;,0)+ My,(0,x,)mod(x)<**.
We restrict again:
M(x,0)=My,(x,,0) mod(x)***,
M(0, x,)=My,(0,x,) mod(x)**!

and substitute:
M = M(x,,0)+ M(0, x,) mod (x)***.

We apply Krull’s intersection theorem and obtain:
M =M(x,,0)+M(@©,x,).

By (O0) we know m, > 0. If m, were positive then the last equality would imply that
X is decomposable, a contradiction. Symmetrically n, =0 since U is indecompos-
able. This concludes the proof of step (3) and of Theorem 2.

4. Proof of Theorem 4

Let us first give some specifications concerning the assertion of Theorem 4: Let
n: X T be a morphism of analytic space germs with section ¢: T—X. Forte T
denote by X, the germ in a(t) of the fiber of 7 over t. We then say that {X,},.risa
local analytic family of analytic space germs. Such a family is called trivial — or = is
called trivial along o — if there is an isomorphism X ~ X, x T over T mapping o(T)
onto 0 x T. For a trivial family we clearly have X,~ X, for all te T. Conversely it
was shown in [H-M] that if T is reduced and X, >~ X, for all te T then the family
{X,}ser is trivial.

Let us now prove Theorem 4. First consider the special case T=(C, 0). Choose
embeddings X C(€™,0)x T and YC(€",0)x T over T. We may assume that the
sections are given by t—(0, t). Choose fe €{x, ¢}?and ge €{y, t}* defining X and Y.
Then both together define an analytic space germ Z in (€C"**",0)x T. The
projection (x, y, t)—t with section ¢t—(0, t) gives a local analytic family {Z,},. r of
analytic space germs with Z,~ X, x Y,. Hence our assumption implies via [H-M,
Theorem 1'] that the family {Z,},.r is trivial. Now apply the triviality criterion

[G-H, Proposition 2]: There are a (p+g) x (p+g)-matrix M= (AMll ﬁz) and
3 4

) both with entries in €{x, y, ¢} such that (:) (0,t)=0 and
AR HE PR
() =4(0)+ (% 50)()

alf=M1|y=0 'f+axf'a|y=09

and similarly for g. Applying again [G-H, Proposition 2] the families {X,},. and
{Y};cr will be trivial.

a

an (m+ n)-column ( b

We obtain:
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Now let T be an arbitrary reduced germ. By [H-M, Theorem 1'] there is a
reduced analytic germ R C T, called the trivial locus of the family {X,},. 7, with the
following property: For any base change «: 7'— T with T' reduced the induced
morphism 7’: X'=X X T'> T is trivial along the induced section ¢': T'—> X" if
and only if « maps into R.

So let R and S denote the trivial loci of {X,},.r and {Y},.r. We have to prove
that RnS =T Assume that RnS is strictly contained in 7. We can clearly reduce to
the case that T is irreducible. Hence dim RnS <dim T. Embed T in some smooth
space (C*,0). If d=dimRn~S and H is a generic (k— d)-plane in (C*,0) then RnS
nH=0but Tn H has positive dimension. Hence there is an irreducible curve CC T
which is not contained in RnS. Take the normalization (C,0)-»CCT. By the
special case considered before and the very definition of the trivial loci we must
have CCRNS, and contradiction. This proves Theorem 4.

Remark. One might hope that Theorem 4 combined with Mather’s path-method
(cf. [G-H, proof of Theorem, Sect. 2]) gives the following result: If X, Y and X',
Y’ are indecomposable analytic space germs with X x Y~ X’ x Y’ then X ~ X" up
to permutation. This would yield in particular Theorem 3 without any assump-
tion on algebraicity.

However, one encounters a serious obstacle in this approach: It looks difficult
to find analytic families {X,},.¢c and {Y};cc With Xo=X, X=X, Y,=Y, ¥, =Y’
and such that X, x ¥;~ X, x Y, for all t in a domain of € containing 0 and 1. Once
this could be done the assertion would be immediate from Theorem 4.

5. Some auxiliary results

Let 2,=C[[x]], x=(x?, ..., x"), be the algebra of formal power series and A" the
affine algebroid space of local ring 2,

Lemma 1 (a) [Z, Lemma 4]. Let D € Der 2, be a formal vector field not vanishing at
0. Then there is a formal change of coordinates ¢ € Aut#, such that ®DP~'=4,,.
(b) [F, p. 93] Let IC, be an ideal such that 0., 1CI. Then I=1(0,x?,...,x").

Combining these assertions with the proof of [E, Lemma 1.5] gives:

Lemma 2. Algebroid spaces X and Y satisfying X x A"~Y x A" for some n are
isomorphic.

Next we prove two results about normal forms of certain matrices.
A . ..
Lemma 3. Let ( B) be an (m+ n) x r-matrix of rank r with entries in C. Then there

are invertible matrices K € GL{m, C) x GL{(n,C)CGL(m+ ﬁ, C) and Le GL(r, C) such
that

1 0 0\ my
010\ m
A 00 0} m
K(B)'L=00 0| n
01 0/ n,
00 1/ n,

m m,n

w
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The integers m;, n, are uniquely determined by the conditions tk A=m, +m,, 1k B

=n,+n,, 1k =r=m;+m,+n; and m=Y m, n=Y n,

B

Proof. Uniqueness is clear. Existence goes by induction onr. If rkA=r=rkB then
1 .

K ,-A= (0> and K, B= (2) for suitable (K,,K,)e GL(m,€C)x GL(n,C). If

rk A <r then after multiplication with an element from GL(r, C) we may assume

that the last column of A4 is zero. As rk (g) =r the last column of B is then non-

zero. After multiplication with an element from GL(n, C) we may assume that the
last column of B equals (0...01). Multiplication with a suitable element from
GL{r, €) transforms the last row of Binto (0 ... 01) leaving 4 invariant. Now apply

. . ) . A
the induction hypothesis to the (m +n— 1) x (r — 1)-matrix obtained from < B> by
deleting the last row and column.
A, A
dLetA=|"" "7
Lemma 4. Let ( A, 4,

€. Assume that

) be an invertible (m + n) x (r + s)-matrix with entries in

A
rk(A‘) =rkA;+1k A,

3

and

rk <A2> =1kA,+1kA,.
Ay

Then there are invertible matrices K e GL(m,C)x GL(n,C)CGL(m-+n,C) and
LeGL{r,C) x GL{s, C©)CGL(r+s, T) such that

1 0 0 0\ m,

0010|m
K-4-L=l4 o ¢ 1 n,

010 0/ n,

myn, my,n,

The integers m, n; are uniquely determined.

Proof. Uniqueness is clear. Using Lemma 3 and the first rank condition we may
assume that

1 0\ m,
A, 0 0} m,
(Aa)— 0 0/ n
0 1/ n,
my n,
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(Az) ( *) "
= C ’n2+n1 .
A,
* n2
m,+n,

Now write

As A is invertible, C 1is. Multiplication of 4 with (1 C~Y)eGL(r,C)

1

A .
x GL(m, + n,, C) leaves ( 4 ) invariant and transforms C into 1. We now have

3

* *\ m
AN (1 0} m,
()-o ) o
* * n2
my ny

Actually by the second rank condition the upper and lower block are of form (* 0)
and (0 #) respectively. Multiplication with a suitable element from GL{m, )

A5) . . . AN . .
x GL{n, C) transforms (Az into the desired form leaving (Al) invariant.
4. 3

Also we shall need a result on normal forms of formal endomorphisms of A”". If
this statement could be proven in the analytic category one could also prove the
unique factorization property for all analytic space germs without assumption on
algebraicity.

Lemma 5. Let x=(x,,x,) be a partition of the coordinates on A"=A" x A™.
Consider formal morphisms o, f: A"— A" satisfying

a=(ay, ;) =(x;,0)mod(x)?,
B=(B1,B2)=(0,xz) mod(x).

Then there is a formal automorphism ¢ of A", tangent to the identity, such that the
conjugates a=dup ' and B=@B¢ ! satisfy:

a(x) = (& (x,), 3,(x)),
B(x)=(B1(x), Ba(x,)).

Proof (cf. [E1, pp. 21-23]). Let ¢, =Id. We shall prove by induction on k: For
every k > 2 there is an automorphism ¢, of A" such that ¢, = ¢, _ , mod(x)* and the
conjugates of « and B with respect to ¢, satisfy (:) modulo (x)**!. The assertion of
the lemma then follows by taking ¢ to be the projective limit of the ¢,’s.

For the induction step we may assume that ¢,._, =1Id and

()

oy (x)=x, + Alx,) +o(x)mod (x)k 1,
a,(x)=0, Bi(x)=0 mod(x)?,

Ba(x)= x5 + p(x2) + 7(x) mod (x)* + 1,
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where the components of A and p are polynomials of order =2 and degree <k, and
the components of ¢ (resp. t) are homogeneous polynomials of degree k contained
in the ideal (x,)- C[[x]] (resp. (x;)- €[[x]]). Define

dux)=(xy +0(x), x; + t(x)) = : (E4(x), (u(X)) .

Then we have the following congruences modulo (x)**?:

Ca(a(x))=x; +4(x,) + 0(x) + o(a(x))

=x, +0o(x)+A(x,)
= §(x) + AEx(x))
and
CAB(x))= {ilx) + u(Cul(x))
hence:

(&g ) ()=, +A(x,),
GxBde N =x, + plx,).
This proves the induction step.
We conclude with a simple but useful fact:

Lemma 6. Let [ C#, be an ideal and « an automorphism of A", If I1Clo: =o*(I) then
I=TIa.

Proof. We have by iteration: I CIaCIx?C... and the sequence becomes stationary
since &, is Noetherian. Hence Io*=Io**! for some k and then I = Ia.
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